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« Describe the data maturity progression that an
organization undergoes as it becomes data-
driven

 List the data architecture activities that support
the data maturity progression journey

« Recognize the various benefits that are
achieved as an organization progresses toward
agile analytics
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« Use of data within an organization follows a maturity
progression:

« Operational / retrospective -> Strategic / prospective

« Foundational components must be present before
advancing, including:

« Data warehouses / data marts / reporting tables
« Analysis cubes

 Intra-day data extraction

« Advanced data modeling
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The journey toward data use
maturity requires expert support
and an advanced data
infrastructure that increasingly
must deliver real-time analysis.
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Operational Use Cases

 Hourly Throughput Dashboard
« Infectious Disease Dashboard
« CEO Daily Volumes Dashboard
« NICU Dashboard

« Decompensating Patient
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Unnecessary Lab Orders
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Industry Standards / Literature

There are many, many maturity models. Just about every
major vendor has a maturity model. Some exemplar
articles include:

« CMMI (Capability Maturity Model Integration) — Carnegie Mellon / CMMI
Institute

« Sen, A., Ramamurthy, K., & Sinha, A. P. (2012).
https://doi.org/10.1109/TSE.2011.2

« Danciu, I., Cowan, J. D., Basford, M., Wang, X., Saip, A., Osgood, S., ...
Harris, P. A. (2014). https://doi.org/10.1016/j.jbi.2014.02.003

* Yoo, S.,, Kim, S., Lee, K.-H., Jeong, C. W,, Youn, S. W., Park, K. U,, ...
Hwang, H. (2014). https://doi.org/10.1016/j.ijmedinf.2014.04.001



https://doi.org/10.1109/TSE.2011.2
https://doi.org/10.1016/j.jbi.2014.02.003
https://doi.org/10.1016/j.ijmedinf.2014.04.001
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Data Team Overview / Background

Responsible for the data tier of the
organization’s analytics
infrastructure, which includes
various data repositories and the
enterprise data warehouse
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 Our model and architecture:

* Developed organically (3 stages of data
tier maturity)

* Based on the realities of our reporting
requests

* Time (latency) is a major dimension /
consideration
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UVa’s Data Model and Design

Time, time, time.... (Or, should | say, latency, latency, latency)... Why is it so
important?

« Data has an expiration date

» Clinical environment / urgency

**The architectural design must accommodate and deeply integrate the time
dimension

Data Production Pipeline

Typical Refresh - Daily

Staging Data Models Databases OLAP Cubes Reporting

= — =

OLAP Cubes Reporting
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* Clinical data

* Financial data

« Various other domains of data

« Various data types and constructs
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 Complex design
* Multiple data models

« Multiple data refresh
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Data Sources (Sample):

« Epic (various)
« Siemens Invision (patient

accounting, census,
scheduling, registration,

etc) g | g:
« PeopleSoft (supply chain, g : o '!

employee turnover)
« Teletracking
« CMS (beneficiaries)

« Clinical Staff Office
(provider data)

« Be Safe Events

+ Active Directory

 GE Centricity (CPM, CPA)
+ Stratalazz

+ Vizient (UHC)

* Press Ganey

* Locus Health

ART DW Cubes U
Epic Cubes Extracts

3
ART DW ODS \
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ART Datamart Analysis
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« Multiple refresh rates are
complex to manage, hard to
conceptualize B mAmSn.

EDW is master
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« Dally processing increases rapidly
 |tis harder today than yesterday
« Complexity increases over time
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 Complex scheduling needs

* Need to monitor key data processing control limits

* Intervene when processes are outside of control limits
* Proactive monitoring
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« Three distinct stages
« Each stage builds upon the previous stages
« Change in focus from past to present to future

Data Use Maturity Progression m

“Prospective/Agile”

How can we anticipate
tomorrow? What will
“Real-Time" happen next?
eal-Time
ﬁ STAGE 1 '
“Retrospective”
What happened
yesterday? Last month?
Last year?

“Gut Management”

What is happening
today? Now?
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« 600 hours of senior database administrator/data engineering support
« Data model understanding of the business unit or service line
 Reporting tables and/or data mart creation to support required

performance
« Analysis cubes that provide drill down and pivot-style interactive
analysis
Requirements — Stage 1 :
4l_> STAGE 3

“Prospective/Agile”
STAGE 2

— =

“Retrospective”
600 hours
STAGEO

Data marts, analysis
cubes, reporting tables,
extracts, etc

“Gut Management”
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« 300 hours of senior database administrator/data engineering support
« Creation of a business unit or service line ODS

« Optimization of the data pipeline to support a rapid data refresh rate
and the data subset

 The formation of basic data governance processes and management

Requirements — Stage 2 = ]
STAGE 3

“Prospective/Agile”
h STAGE 2

“Real-Time”
300 hours

STAGE 1 ?
Operational Data Store
(ODS), ETL

“Retrospective” optimization, data
subset selection, etc
STAGEO

“Gut Management”
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« 100 hours of senior database administrator/data engineering
support

« Data format and structure changes to support advanced data
modeling

« Custom development to support advanced data techniques

« Advanced data governance methodology utilizing MDM software

Requirements — Stage 3
h STAGE 3
7 “Prospective/Agile”
STAGE 2 100 hours
Modeling data ETL
£ - e support, custom
; Real-Time development, etc
h} STAGE 1

“Retrospective”
STAGEO

“Gut Management”
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« Data maturity progression is cumulative
« Collaborative initiative between customers, data engineering
team, and reporting team

***Estimates are only the data engineering team’s effort

Requirements Summary

STAGE 3
“Prospective/Agile”
STAGE 2 100 hours
Modeling data ETL

. y support, custom
Real-Time" development, etc

300 hours
STAGE 1
Operational Data 5tore
(ODS), ETL optimization,

*Retrospective™ data subset selection,

600 hours et
STAGEOD
Data marts, analysis
cubes, reporting tables,

extracts, etc
“Gut Management”
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« Rapid access to clinical data from
electronic health record

 Flexible data tier

« Helped to foster the organization’s
shift to data-driven decision-making

e Customer demand




= Health
=H Information ? ' IS i ?
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 Clinicians and leaders need this data and
will get it somehow

 Spreadsheets are not your friends

« 'Analyst’ can have many meanings from
department to department

« Unified organizational view?
« Metadata management?

* A reliable data tier is rapidly becoming
iImperative
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 Focus on the quality of the data pipeline
first

 As data becomes more and crucial,
users must learn to first trust the data

« Data production pipeline stability

 Accurate data is not useful if the users
cannot access it

« Strive for data model extensibility

« Plan for changes to the data
architecture—this is one sign of success!
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 Focus on matching the source systems’
data, even if they are wrong!

« The data warehouse should not be the
place where ‘dirty’ data is fixed

« Begin profiling your data and tracking it
over time.

« Key to understanding your data quality
current state and progressing to higher
quality data
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Do the hard work of data modeling first

« Take time to model your data and use
cases in order to fully support your
customers

 Don't just create rapidly refreshing copies
of source systems

* A system-agnostic data model will save
time in the future (e.g., system
changes/vendor changes)




7] Health .. e :
- BisunEucuIl Implications - Difficulties
= & Technology

e Victim of our own success?

 Highly dependent on source systems (and their
availability / uptime)

« Complex data transformations, with a large
number of steps

 Nuanced reporting problems (data mismatch)

« Many of the most important reports need to be
ready early in the morning, when there is the
least amount of processing capacity/time
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Questions?

danomalley@Virginia.edu



